
gobigger
Release 0.2.0

OpenDILab Contributors

Jan 29, 2023

TUTORIAL

1 Overview 1

2 Indices and tables 3
2.1 Installation . 3
2.2 Quick Start . 4
2.3 What is GoBigger? . 6
2.4 GoBigger Engine Design . 7
2.5 Real-time Interaction with game . 10
2.6 Space . 10
2.7 GoBigger environment . 14
2.8 Playback System . 15
2.9 Configuration . 17
2.10 Collision Detection Algorithm . 17
2.11 FAQ . 18
2.12 agents . 19
2.13 balls . 19
2.14 managers . 24
2.15 players . 27
2.16 render . 29
2.17 server . 30
2.18 utils . 30

Index 35

i

ii

CHAPTER

ONE

OVERVIEW

GoBigger is a multi-agent environment for reinforce learning. It is similar to Agar, which is a massively multiplayer
online action game created by Brazilian developer Matheus Valadares. In GoBigger, players control one or more circular
balls in a map. The goal is to gain as much size as possible by eating food balls and other balls smaller than the player’s
balls while avoiding larger ones which can eat the player’s balls. Each player starts with one ball, but players can split
a ball into two once it reaches a sufficient size, allowing them to control multiple balls.

GoBigger allows users to interact with the multi-agent environment easily. Through the given interface, users can get
observations by actions created by their policy. Users can also customize their game environments by changing the
args in the config.

1

https://agar.io/

gobigger, Release 0.2.0

2 Chapter 1. Overview

CHAPTER

TWO

INDICES AND TABLES

2.1 Installation

2.1.1 Prerequisites

System version:

• Centos 7

• Windows 10

• MacOS

Python version: 3.6.8

2.1.2 Get and install GoBigger

You can simply install GoBigger from PyPI with the following command:

pip install gobigger

If you use Anaconda or Miniconda, you can install GoBigger through the following command:

conda install -c opendilab gobigger

You can also install with newest version through GitHub. First get and download the official repository with the fol-
lowing command line.

git clone https://github.com/opendilab/GoBigger.git

Then you can install from source:

install for use
Note: use `--user` option to install the related packages in the user own directory(e.g.
→˓: ~/.local)
pip install . --user

install for development(if you want to modify GoBigger)
pip install -e . --user

3

gobigger, Release 0.2.0

2.2 Quick Start

2.2.1 Launch a game environment

After installation, you can launch your game environment easily according the following code:

import random
from gobigger.envs import create_env

env = create_env('st_t2p2')
obs = env.reset()
for i in range(1000):

actions = {0: [random.uniform(-1, 1), random.uniform(-1, 1), 0],
1: [random.uniform(-1, 1), random.uniform(-1, 1), 0],
2: [random.uniform(-1, 1), random.uniform(-1, 1), 0],
3: [random.uniform(-1, 1), random.uniform(-1, 1), 0]}

obs, rew, done, info = env.step(actions)
print('[{}] leaderboard={}'.format(i, obs[0]['leaderboard']))
if done:

print('finish game!')
break

env.close()

You will see output as following. It shows the frame number and the leaderboard per frame.

[0] leaderboard={0: 3000, 1: 3100.0}
[1] leaderboard={0: 3000, 1: 3100.0}
[2] leaderboard={0: 3000, 1: 3100.0}
[3] leaderboard={0: 3000, 1: 3100.0}
[4] leaderboard={0: 3000, 1: 3100.0}
[5] leaderboard={0: 3000, 1: 3100.0}
[6] leaderboard={0: 3000, 1: 3100.0}
[7] leaderboard={0: 3000, 1: 3100.0}
[8] leaderboard={0: 3000, 1: 3100.0}
[9] leaderboard={0: 3000, 1: 3100.0}
[10] leaderboard={0: 3000, 1: 3100.0}
...

4 Chapter 2. Indices and tables

gobigger, Release 0.2.0

2.2.2 Customize your config

Users can also choose to customize the game environment by modifying the configuration cfg and through the
gobigger.envs.create_env_custom method we provide. The gobigger.envs.create_env_custom method
accepts two parameters, the first parameter is type, the optional value is st or sp, which represent the standard game
mode, and the independent action game mode. See the introduction of the two modes for details. Below we give a few
simple examples based on the standard game mode.

Add more players in a game

For example, you may want to allow 6 teams and 2 players per team in your game, and then please modify team_num
and player_num_per_team in config.

from gobigger.envs import create_env_custom

env = create_env_custom(type='st', cfg=dict(
team_num=6,
player_num_per_team=2

))

Extend the game time

If you want to extend the game time to 20 minutes (24000 frames), you can use the following codes.

from gobigger.envs import create_env_custom

env = create_env_custom(type='st', cfg=dict(
frame_limit=24000

))

Change the size of the map

If you want to have a larger map, you can change map_width and map_height in config.

from gobigger.envs import create_env_custom

env = create_env_custom(type='st', cfg=dict(
map_width=1000,
map_height=1000,

))

2.2. Quick Start 5

gobigger, Release 0.2.0

2.3 What is GoBigger?

2.3.1 Overview

GoBigger is an Agar like game, which is one of the most popular game all over the world. In GoBigger, users control
their owned balls to collect weight in a 2-d map with border. There are many other balls in the map, such as food balls,
thorns balls, spore balls and other players’ balls. With the limited time, user are ranked by the weight they collect. In
order to improve the antagonism of the game, users are allowed to eat other others’ balls to get more weight. So in a
game, users need to grow by eating food-balls and thorns-balls, and escape from the larger balls, and eat smaller balls
to gather more weight quickly.

For a more detailed exposition rules of the game, we will firstly introduce the balls in GoBigger.

2.3.2 Balls

• Food balls

Food balls are the neutral resources in the game. They will stay on where they are borned util someone
comes and eats them. If a clone ball eat a food ball, the food ball’s size will be parsed to the clone
ball. There is a maximum number of food balls in the map. Once the number of available food balls
is not enough, the game will generate new food balls in random positions every certain time.

• Thorn balls

Thorns balls are also the neutral resources in the game. Different with food balls, they have larger size
and less quantity. If a clone ball eat a thorn ball, the thorn ball’s size will be parsed to the clone ball.
But at the same time, the clone ball will explode and will be splited into several pieces. In GoBigger,
the pieces always have the same size, and they will appear evenly around the original clone ball. So
be careful! If there are other clone balls larger than yours, you should pay more attention to decide
whether to eat the thorns-balls.

Another feature of the thorns-balls is that they can be moved by clone balls through ejecting spore
balls. If a clone ball eject spore balls to a thorn ball, the thorn ball will eat the spore balls and grow
larger. Besides, it will move on the moving direction of the spore balls. That means if a clone ball
wants to force a larger clone ball to explode, it can eject spore balls to the thorn ball and move it to
the larger clone ball.

• Spore balls

Spore balls are ejected by the clone balls. They will stay on the map and can be eaten by any other
clone balls. Spore balls can not move or eat others.

• Clone balls

Clone balls are the balls you can control in the game. You can change its moving direction at any time
if you want. In addition, it can eat other balls smaller than itself by covering others’ center. Once a
clone ball eat other balls, its size will raise and it radius will increase accordingly. A clone ball has
there skills:

– Eject

Ejecting a spore ball can help a clone ball decrease its size and make it move faster.
When a clone ball ejects, the new spore ball must appear on the clone ball’s moving
direction with a high speed and quickly slow down.

– Split

6 Chapter 2. Indices and tables

https://agar.io/

gobigger, Release 0.2.0

Spliting helps a clone ball to split itself in two pieces. The two pieces has the same size.
Remember that all pieces will be merged in certain time. If you want to move faster, you
can split and turn your balls into smaller size in order to get higher speed limit.

2.3.3 Rules of Game

There are a few rules to be aware of as following.

1. Player-balls have a decay on size to ensure that they will not grow too large. For example, we set size_decay=0.
00001 in our default setting, which means that a player-ball’s size will drop 0.001% in a state frame. Normaly
we will have 20 state frames in a second, that means a player-ball’s size will drop 0.02% in a second. If your
player-ball’s size is too large, you must eat more others to remain your size.

2. If a player’s all balls are eat, it will respawn in somewhere randomly and immediately.

3. The player’s vision will depends on its balls’ positions. We calculate the centroid of a player, and get the smallest
external square of all balls. After that, we expand this square as the final vision. To guarantee each player’s
vision, we also provide them with the basic vision even if all their balls gather together. For example, if the balls
of a player are dispersed enough, a larger vision will be applied for this player.

4. Each ball has its own speed limit based on its size. In order to ensure the balance of the game, we let larger balls
move slow and smaller balls move fast.

2.3.4 High-level Operations

2.4 GoBigger Engine Design

2.4.1 Overview

This section mainly explains the engine design of GoBigger, including detailed motion logic for various balls. If
readers want to develop a new environment based on GoBigger, or want to learn more about the development details of
GoBigger, they can read this section carefully. For the convenience of explanation, we will introduce the logic of each
ball, and the interaction with other balls. If you are not familiar with the basic ball units in GoBigger, it is recommended
to check the previous section (What is GoBigger) first. Note that the following descriptions are based on the settings
of st_t4p3.

2.4.2 What all balls have in common

1. In GoBigger, you can see that different balls have different sizes. We define that each ball has a certain score,
and the corresponding radius can be calculated from the score.

import math

def score_to_radius(score):
return math. sqrt(score / 100 * 0.042 + 0.15)

2. Food balls are immovable, but thorn balls, spore balls, and clone balls all contain speed attributes, which means
they can all move.

3. If there is a relationship between two balls that can be eaten and eaten (such as between clone balls, between
clone balls and all other balls, between thorn balls and spore balls), then when the centers of the two balls overlap,
it will be determined whether phagocytosis can occur by the scores of the balls. We stipulate that phagocytosis
can only occur when the score of the large ball exceeds 1.3 times that of the small ball.

2.4. GoBigger Engine Design 7

gobigger, Release 0.2.0

4. The center of all balls will not exceed the map boundary during the movement.

5. Our default in-game FPS is 20. That is, the game state is updated 20 times in a second. Also, by default each call
to env.step will advance the environment two frames, the user-provided action will be done in the first frame,
and then the second frame will be given an empty action.

2.4.3 Food Ball

1. Food balls are neutral resources in the game. In the st_t4p3 configuration, the number of food balls on the map
at the start of the game will be 800, and the maximum number is 900. Every 8 frames, (maximum quantity
- current quantity) * 0.01 food balls will be replenished, and the number of food balls will not exceed
the upper limit.

2. The initial score for the food ball is 100. That is, if a clone eats a food ball, the clone’s score will increase by
100.

2.4.4 Thorn Ball

1. Thorn balls are also neutral resource in the game. In the st_t4p3 configuration, the number of thorn balls on
the map at the beginning of the game will be 9, and the maximum number is 12. Every 120 frames, round up
(maximum quantity - current quantity) * 0.2 thorn balls will be added in the map, and the number
of thorn balls will not exceed the upper limit.

2. The initial score of the ball of thorns will be randomly selected from the range of 10000 to 15000.

3. When the player ejects the spore ball to the thorn ball, if the spore ball is covered by the center of the thorn ball,
the thorn ball will eat the spore ball, and at the same time generate an initial velocity of 10 in the direction of the
spore ball’s movement, and the velocity decays uniformly to 0 over 20 frames.

2.4.5 Spore Ball

1. The size of the spore ball is fixed and the score is fixed at 1400.

2. When the spore ball is spit out, the speed is fixed at 30, and the speed is uniformly attenuated to 0 in the 20
frame.

2.4.6 Clone Ball

The size of the clone ball increases as it continues to eat the ball. The initial score for the clone ball is 1000. A single
player can have a maximum of 16 clone balls. The eject skill can only be used when the score of each clone ball
exceeds 3200, and the split skill can only be used when the score exceeds 3600.

Speed

The speed of the clone ball is a combination of three parts of the vector: the player’s action, the centripetal force caused
by the presence of multiple balls, and the gradually decaying speed caused by splitting or eating the thorn ball. The
acceleration caused by player actions and centripetal force is multiplied by the length of each frame as the speed change
amount at each frame.

1. Player Action: As defined by the action space, the player can provide any point (x,y) within a unit circle to
change the speed of the clone ball. Specifically, GoBigger will first normalize this point to the inside of the unit
circle (or to the circle if it is outside, otherwise leave it alone), and then multiply it by the weight 30 to give the
acceleration.

8 Chapter 2. Indices and tables

gobigger, Release 0.2.0

2. Centripetal force: When the player has multiple clone balls, a centripetal force will be generated inside the
multiple balls, which points to the center of mass. In fact, the centripetal force will not be used directly, it will
be divided by the radius as the true centripetal force, and multiplied by the weight 10 to be the acceleration.

3. Gradually attenuated speed after splitting or eating the thorn ball: The new clone ball split by eating the thorn
ball will have a new initial speed after the split. The modulo length of this velocity is related to the radius after
splitting, specifically (260 - 20 * radius) / 7, and the direction is away from the center of the circle. The
velocity decays evenly to 0 over 14 frames. If the Clone Ball is obtained through the split skill, the formula for
calculating the modulo length of this initial velocity is (95 + 19 * radius) / 7.

4. The speed brought by player operation and centripetal force will be limited by the upper speed limit. The upper
speed limit is related to the radius of the ball, and adjusts the upper speed limit by using the larger of the player
action and centripetal force as the ratio. The specific formula is (2.35 + 5.66 / radius) * ratio.

Eating a thorn ball

1. Each time the Clone Ball eats the Thorns Ball, it will split up to a maximum of 10 new Clone Balls. For example,
if a player currently has only two clone balls, and one of the clone balls eats a thorn ball, he will split new 10
clone balls, so the player has a total of `` 12`` Clone Balls; if a player currently has 10 Clone Balls, and one of
them eats a Thorny Ball, he will split a new 6 Clone Ball, so this At that time the player has a total of 16 clone
balls.

2. The maximum score of the new ball split by the Clone Ball is 5000. For example, the current score of the clone
ball is 23000, he eats a thorn ball with a score of 10000, then his score will become 33000. At the same time,
this avatar will split into new 10 avatars. According to the even distribution, the score of each avatar is 3000.

3. After eating the ball of thorns and splitting, the positions of the new balls are evenly distributed around, and there
will always be new ball clones in the horizontal position to the right of the original ball.

Split

1. The new split ball will be in the direction specified by the player. If there is no specified direction, it will appear
in the direction of movement of the original ball.

2. The split skill will divide the score of the original ball equally between the two split balls.

3. The split ball will also have the speed of the original one.

4. Whether after splitting or eating the thorn ball, the player’s clone ball (including triggering the split and eating
the thorn ball, as well as the newly added clone ball after these two operations) will enter a cooldown period with
a length of 20. Clone balls in the cooldown period cannot trigger the operation of merging with their own clone
balls. Additionally, after the Clone Ball completes a merge, it will re-enter the cooldown phase.

Eject

1. The spore balls generated after the sporulation operation is performed by the clone ball will appear in the direction
specified by the player. If there is no specified direction, it will appear in the movement direction of the clone
ball.

2. Each time the clone ball spit out a spore ball, it is equivalent to dividing 1400 from its own score and assigning
it to a new spore ball.

2.4. GoBigger Engine Design 9

gobigger, Release 0.2.0

2.5 Real-time Interaction with game

GoBigger allow users to play game on their personal computer in real-time. Serveral modes are supported for users to
explore this game.

Note: If your version of GoBigger is v0.1.x, please upgrade for a better experience. You can use pip install
--upgrade gobigger to access the latest version of GoBigger.

2.5.1 Standard setting with partial view

If you want to play real-time game on your PC on your own, you can launch a game with the following code:

python -m gobigger.bin.play --mode st --vision-type partial

In this mode, using mouse to control the your balls to move, Q means eject spore on your moving direction, W means
split your balls, and E means stop all your balls and gather them together.

2.5.2 Standard setting with full view

If you want to play real-time game on your PC with your friends, you can launch a game with the following code:

python -m gobigger.bin.play --mode st --vision-type full

2.5.3 Independent action setting with partial view

In the independent action game mode, each ball of the player receives an action individually. But because it is more
difficult to control, we still only receive an action based on the mouse and keyboard in this mode, and assign this action
to all the player’s balls. The game can be started with the following code:

python -m gobigger.bin.play --mode sp --vision-type partial

2.6 Space

2.6.1 Standard game mode

Standard game mode refers to the same game as agar, where the player can only provide one action per frame, and then
all player balls will perform that one action.

10 Chapter 2. Indices and tables

gobigger, Release 0.2.0

Action Space

Since each ball controlled by the player can only move, sporulate, split, and stop, the action space of GoBigger is
relatively simple:

action = [x, y, action_type]

• x, y: is a point in the unit circle. (x, y) represents the player’s manipulation of the ball’s acceleration.

– GoBigger will normalize (x, y) to ensure that its modulus does not exceed 1.

– If the user does not provide acceleration changes, (None, None) can be provided to indicate no
changes to the movement.

• action_type: Int

– 0: means only move, actually every time env.step is called.

– 1: Represents ejecting in the given direction. If the direction is not specified (ie (None, None)), it is
executed in the direction of movement.

– 2: represents splitting in the given direction. If the direction is not specified (ie (None, None)), it is
executed in the direction of movement.

We hope that players can use the various skills of the clone ball more flexibly, and hope that the movement direction will
not limit the choice of skills. Therefore, we allow the player to specify different directions and directions of movement
when using the skill. For example, when the player’s clone ball is moving to the right, if you want to spore down,
you only need to specify action_type=1 and specify (x, y) at the same time, and the clone ball can go to the side.
Continue to move right, while spitting down spores. A simple example is given below.

In addition, some useful actions can be achieved by the clever combination of x, y and action_type. For example,
setting x and y to both None when sporulating spores can achieve cross sporulation. E.g:

Submit actions to the environment

In the case of multiple players, it is necessary to specify the correspondence between each action and the player. The
submitted actions should be a dictionary, and each key-value-pair should be a player’s id and the action he needs
to do in this frame. Therefore, the action can be submitted as follows:

team_infos = env.get_team_infos()
actions = {}
for team_id, player_ids in team_infos.items():

actions.update({player_id: [random.uniform(-1, 1), random.uniform(-1, 1), -1] for␣
→˓player_id in player_ids)})
obs = env.step(actions)

Observation Space

After each step of the game, the user can get the game state under the vision of the clone ball.

obs, reward, done, info = env.step()
global_state, player_states = obs

global_state contains some global information, as follows:

2.6. Space 11

gobigger, Release 0.2.0

{
'border': [map_width, map_height], # map size
'total_frame': total_frame, # The total number of frames in the whole game
'last_frame_count': last_frame_count, # The current number of frames that have passed
'leaderboard': { team_name: team_size } # Current leaderboard information, including␣

→˓the score of each team. The team's score is the sum of the players' scores in the team
}

player_states contains the information that each player can get, according to player_id, as follows:

{
player_id: {

'rectangle': [left_top_x, left_top_y, right_bottom_x, right_bottom_y], # The␣
→˓position of the view box in the global view

'overlap': {
'food': [[position.x, position.y, radius, score], ...], # Food ball␣

→˓information in the field of view, which are position xy, radius, score
'thorns': [[position.x, position.y, radius, score, vel.x, vel.y], ...], #␣

→˓The information of the thorns ball in the field of view, namely position xy, radius,␣
→˓score, current speed xy

'spore': [[position.x, position.y, radius, score, vel.x, vel.y, owner], ...],
→˓ # The spore ball information in the field of view, which are the position xy, radius,␣
→˓score, Current speed xy, from player's id

'clone': [[[position.x, position.y, radius, score, vel.x, vel.y, direction.x,
→˓ direction.y,

player_id, team_id], ...], # Player ball information in the␣
→˓field of view, namely position xy, radius, score, current speed xy, current direction␣
→˓xy, belonging player id, belonging team id

},
'team_name': team_name, # The current player's team id
'score': player_score, # current player's score
'can_eject': bool, # Whether the current player can perform the spore action
'can_split': bool, # Whether the current player can perform the split action

},
...

}

The overlap in player_states represents the structured information about the ball currently in the player’s field
of view. overlap is a simple dictionary, each key-value pair represents information about a ball in view. overlap
contains structured information about food balls, thorn balls, spore balls, and clone balls. Specifically, for example,
we found that the content of the food field is [[3.0, 4.0, 2, 2], ...] (only the first element in the list is shown
here for simplicity) , then the meaning is that in the player’s field of vision, there is a food ball with a radius of 2 at the
coordinates (3.0, 4.0), and the score of this food ball is 2.

Note that the length of the information list for each type of ball is indeterminate. For example, if there are 20 food
balls in the current frame view, the length of the list corresponding to the current food is 20. In the next frame, if the
food ball in the field of view becomes 25, the corresponding list length will become 25. Additionally, if only a portion
of a ball is in the player’s field of view, GoBigger will also give information about the center and radius of the ball in
overlap.

12 Chapter 2. Indices and tables

gobigger, Release 0.2.0

Reward

After each step of the game, the user can get the game’s default reward.

_, reward, _, _ = env.step()

The default reward in the game is very simple, it is the difference between the total score of the player’s current frame
and the total score of the previous frame. Users can design more complex rewards based on the player’s obseravtion.

Other Information

GoBigger provides statistics and puts this information in info. After each step of the game, the user can get it.

_, _, _, info = env.step()

Specifically, info is a dictionary, and in the context of st_t2p2, the following information can be obtained:

2.6.2 Independent Action Game Mode

The independent action game mode means that the player needs to provide action to all of his player balls every frame.
Each player ball of the player can perform actions independently.

Action Space

The minimum action unit is the same as the standard game mode, except that when doing env.step(actions), the
format of actions should be as follows:

actions = {
player_id: {

ball_id: [x, y, action_type],
...

},
...

}

The ball_id here can be determined from the obs obtained in each frame. Each ball_id will uniquely correspond
to one of the player’s clone balls.

Observation Space

Most of it is the same as the standard game mode, the only difference is that the clone ball part will add ball_id
information. This information can be used to tell the player where the ball_id can be taken from when providing
actions.

player_states is as follows:

{
player_id: {

...
'overlap': {

...
(continues on next page)

2.6. Space 13

gobigger, Release 0.2.0

(continued from previous page)

'clone': [[[position.x, position.y, radius, score, vel.x, vel.y, direction.x,
→˓ direction.y,

player_id, team_id, ball_id], ...], # The player's ball␣
→˓information in the field of view, namely position xy, radius, current speed xy,␣
→˓current direction xy, player id, team id, ball id

},
...

}
}

2.7 GoBigger environment

2.7.1 Overview

This section mainly explains the environment design of GoBigger, including the definition of a given environment, and
how to customize the corresponding environment.

2.7.2 Defined environment

GoBigger defines some basic environments, which can be generated by the following code

from gobigger.envs import create_env
env = create_env('st_t4p3')

Among them, the first parameter received by create_env() is a string, which is the name of the environment we have
defined. Similarly, in addition to st_t4p3, we also have st_t2p2, st_t3p2 to choose from. The differences between
each environment are described in detail below.

1. st_t4p3: Created a game scene with four teams of three players each. This is the standard game scene we
define, and parameters including the refresh speed of various balls in it have been adjusted to a relatively robust
level. Users can use this environment to solve some cooperative and confrontational problems in complex spatial
scenarios.

2. st_t2p2: Considering that st_t4p3 may be too large, we provide a smaller game scene. In this scenario, there
are only two teams, and each team has two players. Also, the map size, the number of food orbs and thorn
balls have been reduced accordingly. In addition, in order to reduce the player’s early development time, we set
the player’s first birth score to 13000 in st_t2p2 to allow players to fight quickly, while this value is 1000 in
st_t4p3 .

3. st_t3p2: This is a medium environment between st_t2p2 and st_t4p3, with three teams of two players each.
Like st_t2p2, a higher birth score is also set to reduce development time.

In addition, the above environment defaults to an action every two frames (20 frames per second). If you want a longer
action interval, you can set it with the following code:

from gobigger.envs import create_env
env = create_env('st_t4p3', step_mul=10)

In addition, we have more environments already defined, as follows:

14 Chapter 2. Indices and tables

gobigger, Release 0.2.0

Name Agents Size Map Size Food Thorn Init Size Limited Frame
Small Maps
st_t1p1 1x1 32x32 [65,75] [1,2] 1000 3600(3min)
st_t1p2 1x2 48x48 [130,150] [2,3] 1000 3600(3min)
st_t2p1 2x1 48x48 [130,150] [2,3] 1000 3600(3min)
st_t2p2 2x2 64x64 [260,300] [3,4] 13000 3600(3min)
st_t3p2 3x2 88x88 [500,560] [5,6] 13000 3600(3min)
Large Maps
st_t4p3 4x3 128x128 [800,900] [9,12] 1000 14400(12min)
st_t5p3 5x3 128x128 [900,1000] [10,12] 1000 14400(12min)
st_t5p4 5x4 144x144 [900,1000] [10,12] 1000 14400(12min)
st_t6p4 6x4 144x144 [1000,1100] [11,13] 1000 14400(12min)

2.7.3 Customize the corresponding environment

GoBigger’s rich configuration file design allows users to easily set up every detail in the game.

If you want to make a simple modification on the basis of an environment we have defined, for example, modify the
duration of a round in st_t2p2, you can do the following:

from gobigger.envs import create_env
env = create_env('st_t2p2', dict(

frame_limit=10*60*20,
))

In this way, the new environment opened will become a 10-minute round based on st_t2p2.

2.8 Playback System

GoBigger’s playback system supports three options, which can be selected through the environment’s configuration
file. The configuration items involved are as follows:

config = dict(
...
playback_settings=dict(

playback_type='none', # ['none', 'by_video', 'by_frame']
by_video=dict(

save_video=False,
save_fps=10,
save_resolution=552,
save_all=True,
save_partial=False,
save_dir='.',
save_name_prefix='test',

),
by_frame=dict(

save_frame=False,
save_all=True,
save_partial=False,
save_dir='.',

(continues on next page)

2.8. Playback System 15

gobigger, Release 0.2.0

(continued from previous page)

save_name_prefix='test',
),
by_action=dict(

save_action=False,
save_dir='.',
save_name_prefix='test',

),
),
...

)

playback_type can be one of ['none', 'by_video', 'by_frame'].

• none: means no need to save playback

• by_video: means to save the video directly, and the suffix of the saved file is .mp4. Generally speaking, the
video saved in the st_t4p3 environment is about 80M.

• by_frame: Represents the change amount of each frame saved, and the suffix of the saved file is .pb. Generally
speaking, the st_t4p3 environment saves files around 25M.

2.8.1 Save video

If playback_type='by_video' is selected, the specific configuration items can be as follows:

env = create_env('st_t4p3', dict(
playback_settings=dict(

playback_type='by_video',
by_video=dict(

save_video=True,
save_dir='.', # The directory location where the video needs to be saved
save_name_prefix='test', # Save the prefix of the video name

),
),

))

2.8.2 Save the pb file

If playback_type='by_frame' is selected, the specific configuration items can be as follows:

env = create_env('st_t4p3', dict(
playback_settings=dict(

playback_type='by_frame',
by_frame=dict(

save_frame=True,
save_dir='.', # The directory location where the video needs to be saved
save_name_prefix='test', # The prefix of the name of the saving video

)
),

))

After getting the saved .pb file, you need to view it through our given player. Execute the following command in the
command line to open the player.

16 Chapter 2. Indices and tables

gobigger, Release 0.2.0

python -m gobigger.bin.replayer

After opening the player, you need to select the .pb file you want to view. Then you can start watching. The player
supports double-speed playback, including 2x, 4x, and 8x (by clicking the button in the lower left corner). Also supports
dragging the progress bar.

2.9 Configuration

2.9.1 Overview

In order to allow players to further understand the realization of the game mechanism, we have opened some parameters
for players to adjust. We hope that players can modify the corresponding parameters to achieve a variety of different
environments. At the same time, you can also design your own agent environment to quickly verify the algorithm.

GoBigger puts configurable parameters in gobigger/server/server_default_config.py

2.10 Collision Detection Algorithm

2.10.1 Overview

In order to detect the collision of the sphere in each frame of the game so that the server can update the state of the
sphere, we need to design an efficient collision detection algorithm.
We have designed four collision detection algorithms and encapsulated them into the following four classes.

2.10.2 Algorithm efficiency analysis

The theoretical time complexity of the above four algorithms is as follows:

ExhaustiveCollisionDetection:

𝑂(𝑛 *𝑚)

where n denotes the total number of balls and m denotes the number of balls to be asked.

PrecisionCollisionDetection:

𝑂(𝑛 * 𝑙𝑜𝑔(𝑛) + Σ𝑟 * 𝑙𝑜𝑔𝑛 + 𝑝)

where n denotes the total number of balls, m denotes the number of balls to be asked, k denotes the presicion we set
and p denotes number of spheres that actually collided.

RebuildQuadTreeCollisionDetection:

𝑂(𝑛 * 𝑙𝑜𝑔(𝑛) + 𝑚 * 𝑙𝑜𝑔(𝑛) + 𝑝)

where n denotes the total number of balls, m denotes the number of balls to be asked and p denotes number of spheres
that actually collided.

RemoveQuadTreeCollisionDetection:

𝑂(𝑟 * 𝑙𝑜𝑔(𝑛) + 𝑚 * 𝑙𝑜𝑔(𝑛) + 𝑝)

where n denotes the total number of balls, m denotes the number of balls to be asked, r denotes the number of spheres
whose position status has changed and p denotes number of spheres that actually collided.

2.9. Configuration 17

gobigger, Release 0.2.0

In order to test the efficiency of these algorithms, we modify the parameters including the total number of balls, the
number of queries, the number of changed balls, and the iteration rounds to set the test scenario. The data in the
following table comes from the most representative scenarios

• T: the number of all balls in the map

• Q: the number of query balls, which usually means the moving balls in the map

• C: the number of changing balls, which means the number of collisions

Exhaustive Precision Rebuild QuadTree Remove QuadTree
T=3000
Q=300
C=600

688ms 14ms 47ms 48ms

T=3000
Q=300
C=1500

1067ms 16ms 50ms 178ms

T=10000
Q=1000
C=2000

8384ms 61ms 339ms 497ms

T=10000
Q=2000
C=5000

12426ms 86ms 586ms 2460ms

T=30000
Q=6000
C=3000

127000ms 403ms 5691ms 8419ms

In order to see the pros and cons of each algorithm more intuitively, we integrated test data and drew diagrams of four
algorithms and various parameters as follows:

According to the results, we can think that the PrecisionCollisionDetection algorithm is far better than the other
algorithms in terms of efficiency and stability.

2.11 FAQ

2.11.1 Q1: How to save video in a game?

A1

Set playback_settings when you create the environment. After finishing a game, test.pb will be saved at
save_dir, which can be shown by the GoBigger replayer.

env = create_env('st_t3p2', dict(
playback_settings=dict(

playback_type='by_frame',
by_frame=dict(

save_frame=True,
save_dir='.',
save_name_prefix='test',

),
),

))

18 Chapter 2. Indices and tables

gobigger, Release 0.2.0

2.11.2 Q2: What are the winning conditions at the end of the game?

A2

Sort by calculating the sum of the scores of all players under each team at the end of the game.

2.11.3 Q3: Is there a limit to the size of the partial field of view?

A3

The size of the player’s partial field of view is determined by the relative position of the player’s doppelganger. We
set the player’s minimum field of view to be a matrix of 36*36. With the dispersion of the doppelganger, the player’s
maximum field of vision can reach the global level.

2.12 agents

2.12.1 BaseAgent

class gobigger.agents.base_agent.BaseAgent

Overview:
The base class of all agents

2.12.2 BotAgent

class gobigger.agents.bot_agent.BotAgent(name=None, level=3)

Overview:
A simple script bot

2.13 balls

2.13.1 BaseBall

class gobigger.balls.base_ball.BaseBall(ball_id, position, score, border, **kwargs)

Overview:
Base class of all balls

check_border()

Overview:
Check to see if the position of the ball exceeds the bounds of the map. If it exceeds, the speed and
acceleration in the corresponding direction will be zeroed, and the position will be edged

static default_config()

Overview:
Default config

2.12. agents 19

gobigger, Release 0.2.0

eat(ball)

Overview:
Describe the rules of eating and being eaten

Parameters:
ball <BaseBall>: Eaten ball

get_dis(ball)

Overview:
Get the distance between the centers of the two balls

Parameters:
ball <BaseBall>: another ball

judge_cover(ball)

Overview:
Determine whether the center of the two balls is covered

Parameters:
ball <BaseBall>: another ball

Returns:
is_covered <bool>: covered or not

judge_in_rectangle(rectangle)

Overview:
Determine if the ball and rectangle intersect

Parameters:
rectangle <List>: left_top_x, left_top_y, right_bottom_x, right_bottom_y

Returns:
<bool> : intersect or not

move(direction, duration)

Overview:
Realize the movement of the ball, pass in the direction and time parameters, and return the new position

Parameters:
direction <Vector2>: A point in the unit circle duration <float>: time

Returns:
position <Vector2>: position after moving

remove()

Overview:
Things to do when being removed from the map

20 Chapter 2. Indices and tables

gobigger, Release 0.2.0

2.13.2 FoodBall

class gobigger.balls.food_ball.FoodBall(ball_id, position, score, border, **kwargs)

Overview:

• characteristic:

• Can’t move, can only be eaten, randomly generated

static default_config()

Overview:
Default config

eat(ball)

Overview:
Describe the rules of eating and being eaten

Parameters:
ball <BaseBall>: Eaten ball

move(direction, duration)

Overview:
Realize the movement of the ball, pass in the direction and time parameters, and return the new position

Parameters:
direction <Vector2>: A point in the unit circle duration <float>: time

Returns:
position <Vector2>: position after moving

2.13.3 ThornsBall

class gobigger.balls.thorns_ball.ThornsBall(ball_id, position, score, border, **kwargs)

Overview:

• characteristic:

• Can’t move actively

• Can eat spores. When eating spores, it will inherit the momentum of the spores and move a certain
distance.

• Can only be eaten by balls heavier than him. After eating, it will split the host into multiple smaller
units.

• Nothing happens when a ball lighter than him passes by

static default_config()

Overview:
Default config

2.13. balls 21

gobigger, Release 0.2.0

eat(ball)

Overview:
Describe the rules of eating and being eaten

Parameters:
ball <BaseBall>: Eaten ball

move(direction=None, duration=0.05, **kwargs)

Overview:
Realize the movement of the ball, pass in the direction and time parameters, and return the new position

Parameters:
direction <Vector2>: A point in the unit circle duration <float>: time

Returns:
position <Vector2>: position after moving

2.13.4 CloneBall

class gobigger.balls.clone_ball.CloneBall(ball_id, position, score, border, team_id, player_id,
vel_given=<Vector2(0, 0)>, acc_given=<Vector2(0, 0)>,
from_split=False, from_thorns=False,
split_direction=<Vector2(0, 0)>,
spore_settings={'score_init': 1.5, 'vel_init': 50,
'vel_zero_frame': 10}, sequence_generator=None, **kwargs)

Overview:
One of the balls that a single player can control - characteristic: * Can move * Can eat any other ball smaller
than itself * Under the control of the player, the movement can be stopped immediately and contracted
towards the center of mass of the player * Skill 1: Split each unit into two equally * Skill 2: Spit spores
forward * There is a percentage of weight attenuation, and the radius will shrink as the weight attenuates

static default_config()

Overview:
Default config

eat(ball, clone_num=None)

Parameters:
clone_num <int>: The total number of balls for the current player

eject(direction=None)→ list

Overview:
When spit out spores, the spores spit out must be in the moving direction of the ball, and the position
is tangent to the original ball after spitting out

Returns:
Return a list containing the spores spit out

judge_rigid(ball)

Overview:
Determine whether two balls will collide with a rigid body

Parameters:
ball <CloneBall>: another ball

22 Chapter 2. Indices and tables

gobigger, Release 0.2.0

Returns:
<bool>: collide or not

move(given_acc=None, given_acc_center=None, duration=0.05)

Overview:
Realize the movement of the ball, pass in the direction and time parameters

on_thorns(split_num)→ list

Overview:
Split after encountering thorns, calculate the score, position, speed, acceleration of each ball after
splitting

Parameters:
split_num <int>: Number of splits added

Returns:
Return a list that contains the newly added balls after the split, the distribution of the split balls is a
circle and the center of the circle has a ball

rigid_collision(ball)

Overview:
When two balls collide, We need to determine whether the two balls belong to the same player A. If
not, do nothing until one party is eaten at the end B. If the two balls are the same owner, judge whether
the age of the two is full or not meet the fusion condition, if they are satisfied, do nothing. C. If the
two balls are the same owner, judge whether the age of the two is full or not meet the fusion condition,
Then the two balls will collide with rigid bodies This function completes the C part: the rigid body
collision part, the logic is as follows:

1. To determine the degree of fusion of the two balls, use [the radius of both] and subtract [the distance
between the two] as the magnitude of the force

2. Calculate the coefficient according to the weight, the larger the weight, the smaller the coefficient
will be

3. Correct the position of the two according to the coefficient and force

Parameters:
ball <CloneBall>: another ball

Returns:
state <bool>: the operation is successful or not

score_decay()

Overview:
Control the score of the ball to decay over time

split(clone_num, direction=None)→ list

Overview:
Active splitting, the two balls produced by splitting have the same volume, and their positions are
tangent to the forward direction

Parameters:
clone_num <int>: The total number of balls for the current player

Returns:
The return value is the new ball after the split

2.13. balls 23

gobigger, Release 0.2.0

2.13.5 SporeBall

class gobigger.balls.spore_ball.SporeBall(ball_id, position, border, score, direction=<Vector2(0, 0)>,
owner=-1, **kwargs)

Overview:
Spores spit out by the player ball - characteristic: * Can’t move actively * can not eat * Can be eaten by
CloneBall and ThornsBall * There is an initial velocity at birth, and it decays to 0 within a period of time

static default_config()

Overview:
Default config

eat(ball)

Overview:
Describe the rules of eating and being eaten

Parameters:
ball <BaseBall>: Eaten ball

move(direction=None, duration=0.05)

Overview:
Realize the movement of the ball, pass in the direction and time parameters, and return the new position

Parameters:
direction <Vector2>: A point in the unit circle duration <float>: time

Returns:
position <Vector2>: position after moving

2.14 managers

2.14.1 BaseManager

class gobigger.managers.base_manager.BaseManager(cfg, border)

Overview:
Base class for all ball managers

add_balls(balls)

Overview:
Add one (or more) balls

get_balls()

Overview:
Get all balls currently managed

obs()

Overview:
Return data available for observation

24 Chapter 2. Indices and tables

gobigger, Release 0.2.0

refresh()

Overview:
Refresh. Used to refresh the balls in management. Such as replenishing eaten food balls

remove_balls(balls)

Overview:
Remove managed balls

step(duration)

Overview:
Perform a status update under the control of the server

2.14.2 FoodManager

class gobigger.managers.food_manager.FoodManager(cfg, border, random_generator=None,
sequence_generator=None)

add_balls(balls)

Overview:
Add one (or more) balls

get_balls()

Overview:
Get all balls currently managed

refresh()

Overview:
Refresh. Used to refresh the balls in management. Such as replenishing eaten food balls

remove_balls(balls)

Overview:
Remove managed balls

step(duration)

Overview:
Perform a status update under the control of the server

2.14.3 ThornsManager

class gobigger.managers.thorns_manager.ThornsManager(cfg, border, random_generator=None,
sequence_generator=None)

add_balls(balls)

Overview:
Add one (or more) balls

2.14. managers 25

gobigger, Release 0.2.0

get_balls()

Overview:
Get all balls currently managed

refresh()

Overview:
Refresh. Used to refresh the balls in management. Such as replenishing eaten food balls

remove_balls(balls)

Overview:
Remove managed balls

step(duration)

Overview:
Perform a status update under the control of the server

2.14.4 PlayerManager

class gobigger.managers.player_manager.PlayerManager(cfg, border, team_num, player_num_per_team,
spore_manager_settings,
random_generator=None,
sequence_generator=None)

add_balls(balls)

Overview:
Add one (or more) balls

adjust()

Overview:
Adjust all balls in all players

get_balls()

Overview:
Get all balls currently managed

get_player_names()

Overview:
get all names of players

get_player_names_with_team()

Overview:
get all names of players by teams

get_team_names()

Overview:
get all names of players by teams with team names

26 Chapter 2. Indices and tables

gobigger, Release 0.2.0

remove_balls(balls)

Overview:
Remove managed balls

reset()

Overview:
reset manager

step()

Overview:
Perform a status update under the control of the server

2.14.5 SporeManager

class gobigger.managers.spore_manager.SporeManager(cfg, border, random_generator=None,
sequence_generator=None)

add_balls(balls)

Overview:
Add one (or more) balls

get_balls()

Overview:
Get all balls currently managed

remove_balls(balls)

Overview:
Remove managed balls

step(duration)

Overview:
Perform a status update under the control of the server

2.15 players

2.15.1 BasePlayer

class gobigger.players.base_player.BasePlayer(name=None)
Player’s abstract class

eat(ball)
Eat another ball

eject()

Do sporulation

2.15. players 27

gobigger, Release 0.2.0

move(direction)

Parameters:
direction <Vector2>: Given any point in a unit circle, the angle represents the direction, and the mag-
nitude represents the acceleration

stop()

stop moving

2.15.2 HumanPlayer

class gobigger.players.human_player.HumanPlayer(cfg, team_id, player_id, border, spore_settings,
sequence_generator=None)

add_balls(balls)

Overview:
Add new avatars

Parameters:
balls <List[CloneBall] or CloneBall>: It can be a list or a single doppelganger

adjust()

Overview:
Adjust all the balls controlled by the player, including two parts 1. Possible Rigid Body Collision 2.
Possible ball-ball fusion

cal_centroid()

Overview:
Calculate the centroid

eat(ball)
Eat another ball

eject(direction=None)

Overview:
All clones controlled by the player perform the spore-spitting action

Return:
<list>: list of new spores

get_balls()

Overview:
Get all the balls of the current player

get_clone_num()

Overview:
Get how many avatars the current player has

get_keys_sort_by_balls()

Overview:
Sort by ball score from largest to smallest

28 Chapter 2. Indices and tables

gobigger, Release 0.2.0

Return:
<list>: list of names

get_total_score()

Overview:
Get the total score of all balls of the current player

move(direction=None, duration=0.05)

Overview:
Move all balls controlled by the player The main logic is

1. Processing stopped state

2. If it is stopping, control all balls to move closer to the center of mass

Parameters:
direction <Vector2>: A point in the unit circle duration <float>: time

Returns:
position <Vector2>: position after moving

score_decay()

Overview:
The player’s balls’ scor will decay over time

split(direction=None)

Overview:
All avatars controlled by the player perform splits, from large to small

2.16 render

2.16.1 BaseRender

class gobigger.render.base_render.BaseRender(game_screen_width, game_screen_height, info_width=0,
info_height=0, with_show=False)

2.16.2 EnvRender

class gobigger.render.env_render.EnvRender(game_screen_width=512, game_screen_height=512,
info_width=60, info_height=0, with_show=False,
padding=20, map_width=256, map_height=256)

Overview:
No need to use a new window, giving a global view and the view that each player can see

2.16. render 29

gobigger, Release 0.2.0

2.16.3 RealtimeRender

class gobigger.render.realtime_render.RealtimeRender(game_screen_width=512,
game_screen_height=512, info_width=0,
info_height=0, with_show=True, padding=20,
map_width=128, map_height=128)

Overview:
Used in real-time games, giving a global view

2.16.4 RealtimePartialRender

class gobigger.render.realtime_render.RealtimePartialRender(game_screen_width=512,
game_screen_height=512,
info_width=0, info_height=0,
with_show=True)

Overview:
Used in real-time games to give the player a visible field of view. The corresponding player can be obtained
by specifying the player name. The default is the first player

2.17 server

2.17.1 Server

class gobigger.server.server.Server(cfg=None, seed=None)

spawn_balls()

Overview:
Initialize all balls. If self.custom_init is set, initialize all balls based on it.

2.18 utils

2.18.1 Border

class gobigger.utils.structures.Border(minx, miny, maxx, maxy, random_generator=None)

Overview:
used to specify a rectangular range

contains(position: Vector2)→ bool

Overview:
To judge whether a position in this border.

Parameters:
position <Vector2>: the position to be judged.

Returns:
bool: True or False, whether the position in this border.

30 Chapter 2. Indices and tables

gobigger, Release 0.2.0

sample()→ Vector2

Overview:
Randomly sample a position in the border.

Returns:
Vector2: the sampled position.

2.18.2 BaseCollisionDetection

class gobigger.utils.collision_detection.BaseCollisionDetection(border: Border)

2.18.3 ExhaustiveCollisionDetection

class gobigger.utils.collision_detection.ExhaustiveCollisionDetection(border: Border)

Overview:
Exhaustive Algorithm

solve(query_list: list, gallery_list: list)

Overview:
For the balls in the query, enumerate each ball in the gallery to determine whether there is a collision

Parameters:
query_list <List[BaseBall]>: List of balls that need to be queried for collision gallery_list
<List[BaseBall]>: List of all balls

Returns:

results <Dict[int: List[BaseBall]> return value

int value denotes:
the subscript in query_list

string value denotes:
List of balls that collided with the query corresponding to the subscript

2.18.4 PrecisionCollisionDetection

class gobigger.utils.collision_detection.PrecisionCollisionDetection(border: Border, precision:
int = 50)

Overview:
Precision Approximation Algorithm Divide the map into several rows according to the accuracy that has
been set, dynamically maintain the row information in each frame, and search by row

get_row(x)→ int

Overview:
Get the row coordinates of the ball

Parameter:
node <BaseBall>: The ball need to get its row coordinates

2.18. utils 31

gobigger, Release 0.2.0

solve(query_list: list, gallery_list: list)

Overview:
First, you need to sort the balls in each row according to the ordinate. For the balls in query_list, first
abstract the boundary of the ball into a rectangle, then traverse each row in the rectangle, and find
the first ball covered by the query through dichotomy in each row, and then Enumerate the balls in
sequence until the ordinate exceeds the boundary of the query rectangle.

Parameters:
query_list <List[BaseBall]>: List of balls that need to be queried for collision gallery_list
<List[BaseBall]>: List of all balls

Returns:

results <Dict[int: List[BaseBall]> return value

int value denotes:
the subscript in query_list

string value denotes:
List of balls that collided with the query corresponding to the subscript

2.18.5 RebuildQuadTreeCollisionDetection

class gobigger.utils.collision_detection.RebuildQuadTreeCollisionDetection(border: Border,
node_capacity=64,
tree_depth=32)

Overview:
Build a quadtree on a two-dimensional plane in every frame, and query collisions in the quadtree

solve(query_list: list, gallery_list: list)

Overview:
Construct a quadtree from scratch based on gallery_list and complete the query

Parameters:
query_list <List[BaseBall]>: List of balls that need to be queried for collision gallery_list
<List[BaseBall]>: List of all balls

Returns:

results <Dict[int: List[BaseBall]> return value

int value denotes:
the subscript in query_list

string value denotes:
List of balls that collided with the query corresponding to the subscript

32 Chapter 2. Indices and tables

gobigger, Release 0.2.0

2.18.6 RemoveQuadTreeCollisionDetection

class gobigger.utils.collision_detection.RemoveQuadTreeCollisionDetection(border: Border,
node_capacity=64,
tree_depth=32)

Overview:
Add delete operations for the quadtree, and dynamically maintain a quadtree

solve(query_list: list, changed_node_list: list)

Overview:
Update the points in the quadtree according to the changed_node_list and complete the query

Parameters:
query_list <List[BaseBall]>: List of balls that need to be queried for collision gallery_list
<List[BaseBall]>: List of all balls

Returns:

results <Dict[int: List[BaseBall]> return value

int value denotes:
the subscript in query_list

string value denotes:
List of balls that collided with the query corresponding to the subscript

2.18. utils 33

gobigger, Release 0.2.0

34 Chapter 2. Indices and tables

INDEX

A
add_balls() (gobigger.managers.base_manager.BaseManager

method), 24
add_balls() (gobigger.managers.food_manager.FoodManager

method), 25
add_balls() (gobigger.managers.player_manager.PlayerManager

method), 26
add_balls() (gobigger.managers.spore_manager.SporeManager

method), 27
add_balls() (gobigger.managers.thorns_manager.ThornsManager

method), 25
add_balls() (gobigger.players.human_player.HumanPlayer

method), 28
adjust() (gobigger.managers.player_manager.PlayerManager

method), 26
adjust() (gobigger.players.human_player.HumanPlayer

method), 28

B
BaseAgent (class in gobigger.agents.base_agent), 19
BaseBall (class in gobigger.balls.base_ball), 19
BaseCollisionDetection (class in gobig-

ger.utils.collision_detection), 31
BaseManager (class in gobig-

ger.managers.base_manager), 24
BasePlayer (class in gobigger.players.base_player), 27
BaseRender (class in gobigger.render.base_render), 29
Border (class in gobigger.utils.structures), 30
BotAgent (class in gobigger.agents.bot_agent), 19

C
cal_centroid() (gobig-

ger.players.human_player.HumanPlayer
method), 28

check_border() (gobigger.balls.base_ball.BaseBall
method), 19

CloneBall (class in gobigger.balls.clone_ball), 22
contains() (gobigger.utils.structures.Border method),

30

D
default_config() (gobigger.balls.base_ball.BaseBall

static method), 19
default_config() (gobig-

ger.balls.clone_ball.CloneBall static method),
22

default_config() (gobigger.balls.food_ball.FoodBall
static method), 21

default_config() (gobig-
ger.balls.spore_ball.SporeBall static method),
24

default_config() (gobig-
ger.balls.thorns_ball.ThornsBall static
method), 21

E
eat() (gobigger.balls.base_ball.BaseBall method), 19
eat() (gobigger.balls.clone_ball.CloneBall method), 22
eat() (gobigger.balls.food_ball.FoodBall method), 21
eat() (gobigger.balls.spore_ball.SporeBall method), 24
eat() (gobigger.balls.thorns_ball.ThornsBall method),

21
eat() (gobigger.players.base_player.BasePlayer

method), 27
eat() (gobigger.players.human_player.HumanPlayer

method), 28
eject() (gobigger.balls.clone_ball.CloneBall method),

22
eject() (gobigger.players.base_player.BasePlayer

method), 27
eject() (gobigger.players.human_player.HumanPlayer

method), 28
EnvRender (class in gobigger.render.env_render), 29
ExhaustiveCollisionDetection (class in gobig-

ger.utils.collision_detection), 31

F
FoodBall (class in gobigger.balls.food_ball), 21
FoodManager (class in gobig-

ger.managers.food_manager), 25

G
get_balls() (gobigger.managers.base_manager.BaseManager

method), 24

35

gobigger, Release 0.2.0

get_balls() (gobigger.managers.food_manager.FoodManager
method), 25

get_balls() (gobigger.managers.player_manager.PlayerManager
method), 26

get_balls() (gobigger.managers.spore_manager.SporeManager
method), 27

get_balls() (gobigger.managers.thorns_manager.ThornsManager
method), 25

get_balls() (gobigger.players.human_player.HumanPlayer
method), 28

get_clone_num() (gobig-
ger.players.human_player.HumanPlayer
method), 28

get_dis() (gobigger.balls.base_ball.BaseBall method),
20

get_keys_sort_by_balls() (gobig-
ger.players.human_player.HumanPlayer
method), 28

get_player_names() (gobig-
ger.managers.player_manager.PlayerManager
method), 26

get_player_names_with_team() (gobig-
ger.managers.player_manager.PlayerManager
method), 26

get_row() (gobigger.utils.collision_detection.PrecisionCollisionDetection
method), 31

get_team_names() (gobig-
ger.managers.player_manager.PlayerManager
method), 26

get_total_score() (gobig-
ger.players.human_player.HumanPlayer
method), 29

H
HumanPlayer (class in gobigger.players.human_player),

28

J
judge_cover() (gobigger.balls.base_ball.BaseBall

method), 20
judge_in_rectangle() (gobig-

ger.balls.base_ball.BaseBall method), 20
judge_rigid() (gobigger.balls.clone_ball.CloneBall

method), 22

M
move() (gobigger.balls.base_ball.BaseBall method), 20
move() (gobigger.balls.clone_ball.CloneBall method),

23
move() (gobigger.balls.food_ball.FoodBall method), 21
move() (gobigger.balls.spore_ball.SporeBall method), 24
move() (gobigger.balls.thorns_ball.ThornsBall method),

22

move() (gobigger.players.base_player.BasePlayer
method), 27

move() (gobigger.players.human_player.HumanPlayer
method), 29

O
obs() (gobigger.managers.base_manager.BaseManager

method), 24
on_thorns() (gobigger.balls.clone_ball.CloneBall

method), 23

P
PlayerManager (class in gobig-

ger.managers.player_manager), 26
PrecisionCollisionDetection (class in gobig-

ger.utils.collision_detection), 31

R
RealtimePartialRender (class in gobig-

ger.render.realtime_render), 30
RealtimeRender (class in gobig-

ger.render.realtime_render), 30
RebuildQuadTreeCollisionDetection (class in gob-

igger.utils.collision_detection), 32
refresh() (gobigger.managers.base_manager.BaseManager

method), 24
refresh() (gobigger.managers.food_manager.FoodManager

method), 25
refresh() (gobigger.managers.thorns_manager.ThornsManager

method), 26
remove() (gobigger.balls.base_ball.BaseBall method),

20
remove_balls() (gobig-

ger.managers.base_manager.BaseManager
method), 25

remove_balls() (gobig-
ger.managers.food_manager.FoodManager
method), 25

remove_balls() (gobig-
ger.managers.player_manager.PlayerManager
method), 26

remove_balls() (gobig-
ger.managers.spore_manager.SporeManager
method), 27

remove_balls() (gobig-
ger.managers.thorns_manager.ThornsManager
method), 26

RemoveQuadTreeCollisionDetection (class in gob-
igger.utils.collision_detection), 33

reset() (gobigger.managers.player_manager.PlayerManager
method), 27

rigid_collision() (gobig-
ger.balls.clone_ball.CloneBall method),
23

36 Index

gobigger, Release 0.2.0

S
sample() (gobigger.utils.structures.Border method), 30
score_decay() (gobigger.balls.clone_ball.CloneBall

method), 23
score_decay() (gobig-

ger.players.human_player.HumanPlayer
method), 29

Server (class in gobigger.server.server), 30
solve() (gobigger.utils.collision_detection.ExhaustiveCollisionDetection

method), 31
solve() (gobigger.utils.collision_detection.PrecisionCollisionDetection

method), 31
solve() (gobigger.utils.collision_detection.RebuildQuadTreeCollisionDetection

method), 32
solve() (gobigger.utils.collision_detection.RemoveQuadTreeCollisionDetection

method), 33
spawn_balls() (gobigger.server.server.Server method),

30
split() (gobigger.balls.clone_ball.CloneBall method),

23
split() (gobigger.players.human_player.HumanPlayer

method), 29
SporeBall (class in gobigger.balls.spore_ball), 24
SporeManager (class in gobig-

ger.managers.spore_manager), 27
step() (gobigger.managers.base_manager.BaseManager

method), 25
step() (gobigger.managers.food_manager.FoodManager

method), 25
step() (gobigger.managers.player_manager.PlayerManager

method), 27
step() (gobigger.managers.spore_manager.SporeManager

method), 27
step() (gobigger.managers.thorns_manager.ThornsManager

method), 26
stop() (gobigger.players.base_player.BasePlayer

method), 28

T
ThornsBall (class in gobigger.balls.thorns_ball), 21
ThornsManager (class in gobig-

ger.managers.thorns_manager), 25

Index 37

	Overview
	Indices and tables
	Installation
	Prerequisites
	Get and install GoBigger

	Quick Start
	Launch a game environment
	Customize your config
	Add more players in a game
	Extend the game time
	Change the size of the map

	What is GoBigger?
	Overview
	Balls
	Rules of Game
	High-level Operations

	GoBigger Engine Design
	Overview
	What all balls have in common
	Food Ball
	Thorn Ball
	Spore Ball
	Clone Ball
	Speed
	Eating a thorn ball
	Split
	Eject

	Real-time Interaction with game
	Standard setting with partial view
	Standard setting with full view
	Independent action setting with partial view

	Space
	Standard game mode
	Action Space
	Submit actions to the environment

	Observation Space
	Reward
	Other Information

	Independent Action Game Mode
	Action Space
	Observation Space

	GoBigger environment
	Overview
	Defined environment
	Customize the corresponding environment

	Playback System
	Save video
	Save the pb file

	Configuration
	Overview

	Collision Detection Algorithm
	Overview
	Algorithm efficiency analysis

	FAQ
	Q1: How to save video in a game?
	Q2: What are the winning conditions at the end of the game?
	Q3: Is there a limit to the size of the partial field of view?

	agents
	BaseAgent
	BotAgent

	balls
	BaseBall
	FoodBall
	ThornsBall
	CloneBall
	SporeBall

	managers
	BaseManager
	FoodManager
	ThornsManager
	PlayerManager
	SporeManager

	players
	BasePlayer
	HumanPlayer

	render
	BaseRender
	EnvRender
	RealtimeRender
	RealtimePartialRender

	server
	Server

	utils
	Border
	BaseCollisionDetection
	ExhaustiveCollisionDetection
	PrecisionCollisionDetection
	RebuildQuadTreeCollisionDetection
	RemoveQuadTreeCollisionDetection

	Index

